

TailedCore: Few-Shot Sampling for Unsupervised Long-Tail Noisy Anomaly Detection

Yoon Gyo Jung^{*1}, Jaewoo Park^{*2}, Jaeho Yoon^{*3}, Kuan-Chuan Peng⁴, Wonchul Kim², Andrew Beng Jin Teoh³, and Octavia Camps¹

¹Northeastern University ²AiV Co ³Yonsei University

Introduction

- Previous works:
- → Considers only long-tailed anomaly detection or only noisy/contaminated anomaly detection
- Noisy long-tailed anomaly detection:
- → Realistic scenario which is more challenging. Solving such task is practical.
- Setup
- → Only head class is contaminated with noisy samples and tail class (< 20samples) exists.

Motivation

1) Noise discriminative models, such as SoftPatch removes statistically minor patches assuming less frequent data is noise. However, this accidently also removes tail classes as shown in the figure above (red bar).

2) Greedy sampling used in patchcore samples tail classes well due to the nature of greedy sampling, however, also favors noisy patches as well as shown in the figure above (green bar)

Contributions

- · Suggest a practical and challenging anomaly detection scenario: noisy long-tailed anomaly detection
- Propose a memory-based anomaly detector TailedCore whose memory bank is both noise-free and augmented with tail class features utilized by an exclusive tail-class sampler TailSampler which estimates class size.
- Analyze proposed TailedCore and compare with few-shot and noise discriminative anomaly detection methods.

Method

Pipeline:

- TailSampler : Selectively sample long-tail class samples while excluding noisy samples with GAP features as global features are less affected by anomalies(noise) which are mostly local attributes.
- Denoise with existing noise discriminative methods (e.g. **SoftPatch**) with $S_{clean}(P)$
- Collect patch features $S_{tail}(P)$ from **TailSampler** and merge with denoised patches

TailSampler:

le p, estimate the neighbors of embedding
$$e_i$$
,
 $H_i = \{e \in \mathbb{Z}: \forall (e_i, e_i) \leq e_i\}$

for every e_i with the set of all embeddings Z, where

$$m_i \coloneqq \max \measuredangle(e_i)$$

• With α_i and

$$N_{\alpha}(e_i) = \{e \in Z : \measuredangle(e_i)\}$$

denoting the neighborhood of e_i (the set of all train embedding e within angle α of e_i) estimate its class size based on neighborhoods of neighborhoods by

$$\kappa_i = \operatorname{mode}_{e \in N\alpha_i(e_i)}(|N_{\alpha(e)}|)$$

where $\alpha(e)$ is the adaptive angle with respect to embedding *e* belonging to the neighborhood $N_{\alpha_i}(e_i)$ of embedding e_i . • With κ_i , estimate size of each classes $\eta_{\nu} \approx |C_{\nu}|$ inductively by

$$y) = round \left(\frac{1}{\kappa_{\eta(y)}} \sum_{i=\eta_y}^{\min(\kappa_{\eta})} \right)$$

and find maximum size of tail classes with elbow technique where η_i abruptly changes.

Experiments & Results

- Dataset setup : Pareto / Step K=4 / Step K = 1 (K is number of long-tail class samples). For step, 60% of the classes are long-tailed. Head classes are all contaminated (10% for MVTec, 5% for VisA)
- **TailedCore** outperforms few shot methods (**WinCLIP**, **AnomalyCLIP**) with noisy samples (C_h) and exceeds noise discriminative models (**SoftPatch**) on tail classes C_t

tail typ	e	Paret	0	ste	p(K =	4)	ste	step ($K = 1$)		
class typ	e C_t	C_h	all	C_t	C_h	all	C_t	C_h	all	
PaDiM [9] ICPR	82.45	80.95	82.06	77.47	81.28	79.19	71.54	81.75	75.63	
HVQ [26] NeurIPS'	3 83.46	80.23	82.99	82.01	85.50	83.56	74.15	90.15	80.55	
WinCLIP [19] CVPR	3 89.35	90.11	90.37	91.60	88.21	90.37	91.80	88.23	90.37	
AnomalyCLIP [43] ICLR	4 90.93	90.98	91.48	91.82	90.83	91.48	91.21	91.90	91.48	
PatchCore [34] CVPR	2 93.33	87.59	89.18	92.19	71.18	83.83	86.36	70.48	80.01	
SoftPatch [20] NeurIPS':	2 84.68	86.95	87.71	67.65	97.54	79.64	60.66	97.49	75.40	
TailedCore (our	s) 96.55	95.24	96.12	95.82	95.34	95.71	93.54	95.77	94.43	
ment. Notations: C	$L C_{t}$: hea	d / tai	1 class	es					
menu riouaionsi o	$n \cdot \circ i$			i ciuos	C 3.					
tail type	<i>n</i> · <i>U</i>	Pareto)	ste	p(K=	=4)	st	ep (K	=1)	
tail type	$\overline{C_t}$	Pareto C_h	all		$p(K = C_h$	=4) all	$\frac{st}{C_t}$	ер (К С _h	=1) all	
tail type class type PaDiM [9] _{ICPR'21}	$\frac{C_t}{C_t}$	Pareto C_h 83.35	all 78.64	ste <u>C_t</u> 60.65	$p (K = C_h $ 88.93	=4) all 72.43	st C _t 55.98	ep (K C _h 86.7:	=1) all 5 68.80	
tail type class type PaDiM [9] _{ICPR'21} HVQ [26] _{NeurIPS'23}		Pareto C _h 83.35 84.03	all 78.64 68.25	ste C _t 60.65 68.25	p ($K = C_h$ 88.93 89.30	=4) all 72.43 77.02	st C _t 55.98 61.57	ep (K C _h 86.7:	=1) all 5 68.80 0 69.42	
tail type class type PaDiM [9] ICPR'21 HVQ [26] NeurIPS'23 WinCLIP [19] CVPR'23		Pareto C _h 83.35 84.03 76.92	all 78.64 68.25 75.47	ste C _t 60.65 68.25 75.98	$p (K = \frac{C_h}{C_h}$ 88.93 89.30 74.76	=4) all 72.43 77.02 75.47	st C _t 55.98 61.57 78.80	ep (K C _h 86.7: 80.40 70.80	=1) all 5 68.80 0 69.42 0 75.47	
rioturi v fotutionist class type PaDiM [9] _{ICPR'21} HVQ [26] _{NeurIPS'23} WinCLIP [19] _{CVPR'23} AnomalyCLIP [43] _{ICLR'24}		Pareto C _h 83.35 84.03 76.92 82.48	all 78.64 68.25 75.47 82.05	ste C _t 60.65 68.25 75.98 82.28	p ($K = C_h$ 88.93 89.30 74.76 81.74	=4) all 72.43 77.02 75.47 82.05	st C _t 55.98 61.57 78.80 83.26	ep (K C _h 86.7: 80.40 70.80 80.34	=1) all 5 68.80 0 69.42 0 75.47 4 82.05	
tail type class type PaDiM [9] ICPR21 HVQ [26] NeurIPS 23 WinCLIP [19] CVPR23 AnomalyCLIP [43] ICLR24 PatchCore [34] CVPR23		Pareto C _h 83.35 84.03 76.92 82.48 85.73	all 78.64 68.25 75.47 82.05 85.59	ste C _t 60.65 68.25 75.98 82.28 83.53	$p (K = C_h) \\ \hline C_h \\ 88.93 \\ 89.30 \\ 74.76 \\ 81.74 \\ 67.51 \\ \hline$	=4) all 72.43 77.02 75.47 82.05 76.85	st C _t 55.98 61.57 78.80 83.26 79.33	ep (K C _h 86.7: 80.40 70.80 80.34 68.50	=1) all 5 68.80 0 69.42 0 75.47 4 82.05 6 74.84	
tail type class type PaDiM [9] ICPR 21 HVQ [26] NeurIFS2 WinCLIP [19] CVPR 23 AnomalyCLIP [43] ICLR 24 PatchCore [34] CVPR 22 SoftPatch [20] NeurIFS2	$ \begin{array}{r} \overline{C_t} \\ \overline{C_t} \\ \overline{70.70} \\ 73.47 \\ 73.25 \\ 81.96 \\ \underline{86.11} \\ 78.04 \\ \end{array} $	Pareto C _h 83.35 84.03 76.92 82.48 85.73 92.16	all 78.64 68.25 75.47 82.05 85.59 86.56	ste C _t 60.65 68.25 75.98 82.28 83.53 59.70	$p (K = C_h)$ 88.93 89.30 74.76 81.74 67.51 95.97	=4) all 72.43 77.02 75.47 82.05 76.85 74.81	st C _t 55.98 61.57 78.80 83.26 79.33 52.61	ep (K C _h 86.7: 80.40 70.80 80.34 68.50 94.1	=1) all 5 68.80 0 69.42 0 75.47 4 82.05 6 74.84 7 69.92	
tail type class type PaDiM [9] ICRP 21 HVQ [26] NeutRS 23 WinCLIP [19] CVPR 23 AnomalyCLIP [43] ICLP 24 PatchCore [34] CVPR 22 SoftPatch 20] NeutRS 22 TailedCore (ours)	R + C t C _t 70.70 73.47 73.25 81.96 <u>86.11</u> 78.04 87.55	Pareto C _h 83.35 84.03 76.92 82.48 85.73 92.16 93.06	all 78.64 68.25 75.47 82.05 85.59 86.56 90.85	Ct 60.65 68.25 75.98 82.28 83.53 59.70 85.16	p ($K = C_h$ 88.93 89.30 74.76 81.74 67.51 95.97 95.91	=4) all 72.43 77.02 75.47 82.05 76.85 74.81 89.64	st C _t 55.98 61.57 78.80 83.26 79.33 52.61 82.97	ep (K C _h 86.7 80.4(70.8) 80.3 68.5 94.1	=1) all 5 68.80 0 69.42 0 75.47 4 82.05 6 74.84 7 69.92 1 87.61	
tail type class type PaDiM [9] ICPR21 HVQ [26] NeutPS23 WinCLIP [19] CVPR23 AnomalyCLIP [43] ICLR24 PatchCore [44] CVPR22 SoftPatch [20] NeutPS2 TailedCore (ours) able 2. Anomaly C	$ \frac{C_t}{C_t} $ 70.70 73.47 73.25 81.96 86.11 78.04 87.55 lassif	Pareto C _h 83.35 84.03 76.92 82.48 85.73 92.16 93.06 icatic	all 78.64 68.25 75.47 82.05 85.59 86.56 90.85 DN ON	Ster C _t 60.65 68.25 75.98 82.28 83.53 59.70 85.16 VisA	p ($K = C_h$ 88.93 89.30 74.76 81.74 67.51 95.97 95.91 with	=4) all 72.43 77.02 75.47 82.05 76.85 76.85 74.81 89.64 1 imag	st C _t 55.98 61.57 78.80 83.26 79.33 52.61 82.97 ge-lev	ep (K C _h 86.7: 80.40 70.80 80.34 68.50 94.1 94.1 94.1	=1) all 5 68.80 0 69.42 0 75.47 4 <u>82.05</u> 6 74.84 7 69.92 1 87.61 UROO	

⁴Mitsubishi Electric Research Laboratories

Ablation (Tail Class Sampler)

- Classification accuracy of tail-classes/noisy samples (x-axis) vs metrics (y-axis) relevant to class size prediction and few-shot sampling with step K=4. (a to h from left to right and top to bottom)
- Correlation is strong for (a) mis-sampling ratio, (b) ratio of missing few-shot samples, (e) class size prediction error, and (f) AUROC for few-shot prediction.
- Better embeddings improve TailSampler which in turn improves (g) anomaly classification (image-level AUROC) and (h) anomaly segmentation (pixel-level AUROC) performance.

Ablation (noise ratio)

Limitation

TailSampler can fail if

- The reflective-symmetric assumption on inter, intra-class similarities break down (by poor embedding representation or not aligned with label space well)
- Geometric aspects of defect samples are similar to few-shot class instances in the embedding space.

Conclusion

- We introduce a novel unsupervised anomaly detection task, noisy long-tailed anomaly detection.
- We suggest TailedCore utilized with TailSampler, a unique class size predictor, and successfully navigated the tailversus-noise dilemma by exclusively sampling the tail classes, enhancing performance of noisy long-tailed anomaly detection.

, e) < α}

 $e_{0}(e)|)$

tail type	Pareto			ste	p(K =	-4)	step ($K = 1$)					
class type	C_t	C_h	all	C_t	C_h	all	C_t	C_h	all			
PaDiM [9] ICPR'21	90.11	92.66	91.43	82.53	95.29	87.67	78.80	95.54	85.50			
HVQ [26] NeurIPS'23	93.63	86.85	90.55	90.73	92.58	91.53	86.36	95.20	89.90			
WinCLIP [19] CVPR'23	82.03	84.06	82.29	80.60	84.63	82.29	80.16	85.48	82.29			
AnomalyCLIP [43] ICLR'24	91.24	91.69	91.08	89.96	92.66	91.08	89.34	93.68	91.08			
PatchCore [34] CVPR'22	93.56	87.98	89.93	93.54	72.09	85.19	92.02	71.35	83.75			
SoftPatch [20] NeurIPS'22	92.19	93.83	93.41	80.98	96.49	87.24	70.34	96.89	80.99			
TailedCore (ours)	96.08	95.01	95.29	95.56	93.20	94.74	94.19	93.70	93.99			
able 3. Anomaly segmentation on MVTecAD with pixel-level AU												
OC (%). We report	the r	nean	over !	5 rand	om s	eeds f	or eac	ch me	asure			
ent. Notations: C_h / C_t : head / tail classes.												
tail type	Pareto			step ($K=4$)			step $(K=1)$					
class type	C_t	C_h	all	C_t	C_h	all	C_t	C_h	all			
PaDiM [9] ICPR'21	89.02	95.10	82.81	83.90	97.36	89.51	82.57	96.57	88.40			
HVQ [26] NeurIPS'23	95.27	97.60	96.71	93.88	98.34	95.74	90.58	95.51	92.63			
WinCLIP [19] CVPR'23	71.94	73.97	73.19	74.60	71.21	73.19	73.81	72.32	73.19			

 WinCLF [19] CVRP23
 71.94
 73.97
 73.19
 74.00
 71.21
 73.18
 72.22
 73.19

 AnomalyCLF [43] ICLR24
 95.60
 95.61
 95.51
 95.54
 95.54
 95.54
 95.51
 96.16
 94.60
 95.51

 PatchCore [34] CVR22
 96.84
 87.99
 91.13
 95.39
 62.06
 81.88
 94.11
 65.30
 82.10

 SoftPatch [20] Neurffysz
 93.20
 96.74
 95.27
 83.95
 97.10
 89.43
 80.73
 96.82
 87.43

 TailedCore (ours)
 97.89
 97.25
 97.48
 96.80
 97.02
 96.89
 96.12
 97.39
 96.54
 Table 4. Anomaly segmentation on VisA with pixel-level AUROC (%). The format and evaluation protocol are the same as Tab. 3.